41 research outputs found

    Utilising high work function metal oxides as hole extracting layers for organic photovoltaic cells

    Get PDF
    A substantial amount of research has already been undertaken towards creating commercially viable organic photovoltaics (OPVs). This is due to the potential use of OPV cells as an inexpensive source of renewable energy. There are many factors to consider in OPV cell design, including photo-active materials, cell architecture and electrode selection. However, additional interlayers for use between the photo-active materials and the electrodes were identified to be as important and need to be developed to optimise cell performance. The work presented here focuses on the influence of various metal oxide hole extracting layers in different OPV systems. Metal oxides such as molybdenum oxide (MoOx) have shown great promise in polymer cells as a hole extracting layer, and here we investigate their use in small molecule cells. An optimised MoOx layer thickness of 5 nm provides a ~ 60 % increase in overall power conversion efficiency (ηp) for chloroaluminium phthalocyanine (ClAlPc) / fullerene (C60) cells in comparison to those fabricated on bare ITO. A similar improvement of ηp is reported when using the MoOx layer in a boron subphthalocyanine chloride (SubPc) / C60 system. For both high ionisation potential donor materials, the cells containing MoOx achieve a significantly higher open circuit voltage (Voc). Conversely, cells utilising the lower ionisation potential donor materials such as copper phthalocyanine (CuPc) and pentacene produce similar Voc values when deposited on both ITO and MoOx. Hence, the ηp is marginally reduced with the MoOx layer. To attain a deeper understanding, the factors behind these performance differences were explored by UV-vis absorption spectroscopy, ultra-violet photoemission spectroscopy (UPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). Thermally evaporated vanadium oxide (V2Ox) was used as an alternative hole extracting layer to MoOx, achieving analogous performance to MoOx when used in SubPc / C60 and CuPc / C60 cells. The electronic properties of the V2Ox layer are investigated using UPS, and it is demonstrated to have substoichiometric n-type character in contrast to the p-type behaviour previously reported. Additionally, the in-situ fabrication and characterisation of organic layers using UPS indicate Fermi level pinning of the organic to the metal oxide. A solution processed vanadium oxide (V2Ox(sol)) layer was developed and characterised as an alternative method of layer fabrication. The atmospheric processing conditions are found to have a dramatic effect on cell performance, and are studied using x-ray photoelectron spectroscopy (XPS). Layers spin-coated under a nitrogen atmosphere exhibit a larger composition of V4+ states. Kelvin probe and UPS experiments indicate the V2Ox(sol) is also a high work function, n-type layer, with the V2Ox(sol) hole extracting layer producing similar cell performance to the thermally evaporated metal oxide layers. Cells deposited on the V2Ox(sol) layer demonstrate good operational stability characteristics, outperforming a commonly used solution processable hole extracting layer

    Utilising solution processed zirconium acetylacetonate as an electron extracting layer in both regular and inverted small molecule organic photovoltaic cells

    Get PDF
    Interfacial layers are commonly employed in organic photovoltaic (OPV) cells in order to improve device performance. These layers must be transparent, stable, be compatible with the photo-active materials and provide efficient charge extraction with a good energetic match to the relevant organic material. In this report we demonstrate the compatibility of zirconium acetylacetonate (ZrAcac) electron extracting layers in both regular and inverted small molecule OPV cells. When the ZrAcac was processed in both air and under N2, low work function (3.9 and 3.7 eV respectively), highly transparent layers were formed, with good energetic alignment to both C60 and hexachlorinated boron subphthalocyanine chloride (Cl6-SubPc) acceptors. Initial measurements indicate similar stabilities when using the ZrAcac in either device architecture. These results indicate that the ZrAcac layer can be used as a direct replacement for the commonly used bathocuproine (BCP) in small molecule OPV cells

    Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices

    Get PDF
    Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices

    QTc interval and ventricular action potential prolongation in the Mecp2Null/+ murine model of Rett syndrome

    Get PDF
    Rett Syndrome (RTT) is a congenital, X‐chromosome‐linked developmental disorder characterized by developmental delay, dysautonomia, and breathing irregularities. RTT is also associated with sudden death and QT intervals are prolonged in some RTT patients. Most individuals with RTT have mutations in the MECP2 gene. Whilst there is some evidence for QT prolongation in mouse models of RTT, there is comparatively little information on how loss of Mecp2 function affects ventricular action potentials (APs) and, to‐date, none on ventricular APs from female RTT mice. Accordingly, the present study was conducted to determine ECG and ventricular AP characteristics of Mecp2 ( Null/+ ) female mice. ECG recordings from 12–13 month old female Mecp2 ( Null/+ ) mice showed prolonged rate corrected QT (QTc) intervals compared to wild‐type (WT) controls. Although Mecp2 ( Null/+ ) animals exhibited longer periods of apnoea than did controls, no correlation between apnoea length and QT(c) interval was observed. Action potentials (APs) from Mecp2 ( Null/+ ) myocytes had longer APD(90) values than those from WT myocytes and showed augmented triangulation. Application of the investigational I(Na,Late) inhibitor GS‐6615 (eleclazine; 10 μM) reduced both APD(90) and AP triangulation in Mecp2 ( Null/+ ) and WT myocytes. These results constitute the first direct demonstration of delayed repolarization in Mecp2 ( Null/+ ) myocytes and provide further evidence that GS‐6615 may have potential as an intervention against QT prolongation in RTT

    Delayed Ventricular Repolarization and Sodium Channel Current Modification in a Mouse Model of Rett Syndrome

    Get PDF
    Rett syndrome (RTT) is a severe developmental disorder that is strongly linked to mutations in the MECP2 gene. RTT has been associated with sudden unexplained death and ECG QT interval prolongation. There are mixed reports regarding QT prolongation in mouse models of RTT, with some evidence that loss of Mecp2 function enhances cardiac late Na current, I(Na,Late). The present study was undertaken in order to investigate both ECG and ventricular AP characteristics in the Mecp2(Null/Y) male murine RTT model and to interrogate both fast I(Na) and I(Na,Late) in myocytes from the model. ECG recordings from 8–10-week-old Mecp2(Null/Y) male mice revealed prolongation of the QT and rate corrected QT (QTc) intervals and QRS widening compared to wild-type (WT) controls. Action potentials (APs) from Mecp2(Null/Y) myocytes exhibited longer APD(75) and APD(90) values, increased triangulation and instability. I(Na,Late) was also significantly larger in Mecp2(Null/Y) than WT myocytes and was insensitive to the Nav1.8 inhibitor A-803467. Selective recordings of fast I(Na) revealed a decrease in peak current amplitude without significant voltage shifts in activation or inactivation V(0.5). Fast I(Na) ‘window current’ was reduced in RTT myocytes; small but significant alterations of inactivation and reactivation time-courses were detected. Effects of two I(Na,Late) inhibitors, ranolazine and GS-6615 (eleclazine), were investigated. Treatment with 30 µM ranolazine produced similar levels of inhibition of I(Na,Late) in WT and Mecp2(Null/Y) myocytes, but produced ventricular AP prolongation not abbreviation. In contrast, 10 µM GS-6615 both inhibited I(Na,Late) and shortened ventricular AP duration. The observed changes in I(Na) and I(Na,Late) can account for the corresponding ECG changes in this RTT model. GS-6615 merits further investigation as a potential treatment for QT prolongation in RTT

    Selecting phthalocyanine polymorphs using local chemical termination variations in copper iodide

    Get PDF
    Copper(I) iodide (CuI) thin films are employed as a structural templating layer for the growth of metal-free phthalocyanine (H2Pc) thin films. Structural polymorphs are observed in X-ray diffraction patterns when microcrystalline CuI films exhibiting copper and iodine terminated grains are used. Each polymorph is nucleated from a single termination, and distinctive crystallite morphologies are observed for each

    Spectroscopic and nonlinear optical properties of the four positional isomers of 4α-(4-tert-butylphenoxy) phthalocyanine

    Get PDF
    The spectroscopic and nonlinear optical properties of the positional isomers of metal free 4α-(4-tert-butylphenoxy) phthalocyanine are presented. Second order nonlinear polarizability (β), imaginary hyperpolarizability (Im(γ)) and imaginary susceptibility (Im[χ(3)]) values were determined for the four positional isomers. The measured β values of the four isomers displayed the following trend, C4h (34.0 × 10−5 m MW−1) > D2h (28.8 × 10−5 m MW−1) > C2v (22.8 × 10−5 m MW−1) > Cs (13.7 × 10−5 m MW−1)

    Physical fitness and dementia risk in the very old:A study of the Lothian Birth Cohort 1921

    Get PDF
    Abstract Background Previous studies have demonstrated that individual measures of fitness – such as reduced pulmonary function, slow walking speed and weak handgrip – are associated with an increased risk of dementia. Only a minority of participants included in these studies were aged over 80. The aim of this study was therefore to investigate the association between physical fitness and dementia in the oldest old. Methods Subjects (n = 488) were enrolled in the Lothian Birth Cohort 1921 and aged 79 at baseline. Dementia cases arising after enrolment were determined using data from death certificates, electronic patient records and clinical reviews. Fitness measures included grip strength, forced expiratory volume in 1 s (FEV1) and walking speed over 6 m, measured at 79 years. Dementia risk associated with each fitness variable was initially determined by logistic regression analysis, followed by Cox regression analysis, where death was considered as a competing risk. APOE ε4 status, age, sex, height, childhood IQ, smoking, history of cardiovascular or cerebrovascular disease, hypertension and diabetes were included as additional variables. Cumulative incidence graphs were calculated using Aalen-Johansen Estimator. Results Although initial results indicated that greater FEV1 was associated with an increased risk of dementia (OR (odds ratio per unit increase) 1.93, p = 0.03, n = 416), taking into account the competing risk of mortality, none of the fitness measures were found to be associated with dementia; FEV1 (HR (hazard ratio per unit increase) 1.30, p = 0.37, n = 416), grip strength (HR 0.98, p = 0.35, n = 416), walking speed (HR 0.99, p = 0.90, n = 416). The presence of an APOE ɛ4 allele was however an important predictor for dementia (HR 2.85, p < 0.001, n = 416). Cumulative incidence graphs supported these findings, with an increased risk of dementia for APOE ɛ4 carriers compared with non-carriers. While increased FEV1 was associated with reduced risk of death, there was no reduction in risk for dementia. Conclusions In contrast to previous studies, this study found that lower fitness beyond age 79 was not a risk factor for subsequent dementia. This finding is not explained by those with poorer physical fitness, who would have been more likely to develop dementia, having died before onset of dementia symptoms

    Health, education, and social care provision after diagnosis of childhood visual disability

    Get PDF
    Aim: To investigate the health, education, and social care provision for children newly diagnosed with visual disability.Method: This was a national prospective study, the British Childhood Visual Impairment and Blindness Study 2 (BCVIS2), ascertaining new diagnoses of visual impairment or severe visual impairment and blindness (SVIBL), or equivalent vi-sion. Data collection was performed by managing clinicians up to 1-year follow-up, and included health and developmental needs, and health, education, and social care provision.Results: BCVIS2 identified 784 children newly diagnosed with visual impairment/SVIBL (313 with visual impairment, 471 with SVIBL). Most children had associated systemic disorders (559 [71%], 167 [54%] with visual impairment, and 392 [84%] with SVIBL). Care from multidisciplinary teams was provided for 549 children (70%). Two-thirds (515) had not received an Education, Health, and Care Plan (EHCP). Fewer children with visual impairment had seen a specialist teacher (SVIBL 35%, visual impairment 28%, χ2p < 0.001), or had an EHCP (11% vs 7%, χ2p < 0 . 01).Interpretation: Families need additional support from managing clinicians to access recommended complex interventions such as the use of multidisciplinary teams and educational support. This need is pressing, as the population of children with visual impairment/SVIBL is expected to grow in size and complexity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Understanding domain symmetry in vanadium oxide phthalocyanine monolayers on Au (111)

    Get PDF
    Understanding the growth of organic semiconductors on solid surfaces is of key importance for the field of organic electronics. Non planar phthalocyanines have shown great promise in organic photovoltaic (OPV) applications, but little of the fundamental surface characterization to understand their structure and properties has been performed. Acquiring a deeper understanding of the molecule/substrate interaction in small molecule systems is a vital step in controlling structure/property relationships. Here we characterize the vanadium oxide phthalocyanine (VOPc)/Au (111) surface using a combination of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM), obtaining complex diffraction patterns which can be understood using two dimensional fast Fourier transform (2D-FFT) analysis of STM images. These measurements reveal coexistence of three symmetrically equivalent in-plane orientations with respect to the substrate, each of which is imaged simultaneously within a single area. Combining scanning probe and diffraction measurements allows symmetrically related domains to be visualized and structurally analyzed, providing fundamental information useful for the structural engineering of non-planar phthalocyanine interfaces
    corecore